Riferimenti bibliografici

Invia a un amico Stampa in PDF

Foto

bibliografia.jpg

Di seguito sono elencate le applicazioni chiave del sistema di tomoterapia (testa e collo, mammella, prostata, polmone), un breve riassunto dello stato attuale della letteratura pubblicata in materia di caratteristiche distintive della tecnologia, seguiti da complete bibliografie specifiche per ciascuna applicazione.

9.1. Testa e collo

Il trattamento dei tumori della testa e del collo dimostra chiaramente i punti di forza del sistema di tomoterapia. Gli studi pubblicati mostrano la capacità di creare distribuzioni di dose per neoplasie estese e di forma complicata, trattate contemporaneamente a più livelli di dose (ad esempio, alte dosi per il volume tumorale, dosi inferiori alle regioni nodali ad alto rischio, e dosi ancora inferiori alle regioni a basso rischio), e con il massimo risparmio di dose per gli organi sensibili a rischio come chiasma ottico, midollo spinale, tronco encefalico e ghiandole parotidi, con un netto miglioramento rispetto ai piani IMRT convenzionali [10,14,23,24,29,45,54,56,65,71].

La registrazione mediante MVCT su base quotidiana, che viene facilmente eseguito con il sistema di tomoterapia, ha dimostrato di poter limitare gli errori di posizionamento del paziente in modo che si possano avere margini ristretti del CTV rispetto il PTV riducendo ulteriormente le dosi agli OAR e assicurando un'adeguata copertura del PTV [11,18,31,77].

Risultati clinici pubblicati fino ad oggi dimostrano che il trattamento eseguito con la tomoterapia ha come risultato un controllo della malattia loco-regionale e una sopravvivenza che è paragonabile a quella ottenuta quando dosi simili sono somministrate con trattamenti IMRT convenzionali [26,35,51,59,66,67]. La tossicità acuta e tardiva è paragonabile alle altre modalità IMRT, l'incidenza di xerostomia a lungo termine è inferiore [35,59,66,70]. In uno studio di confronto diretto IMRT convenzionale con la tomoterapia, la xerostomia a lungo termine è stata riportata dal 38% dei pazienti IMRT e il 7% dei pazienti trattati con la tomoterapia [15].

Infine, i ricercatori di Accuray/TomoTherapy sono attivi nello sviluppo della radioterapia "adaptive" per la testa -collo, agevolati in questo compito in parte dalla comodità di rappresentazione volumetrica giornaliera e in parte dalla facilità e dalla precisione della ricostruzione delle distribuzioni di dose somministrata mediante ricalcolo sulle MVCT utilizzate per la registrazione quotidiana del posizionamento del paziente . Anche se lo sviluppo della pratica della radioterapia "adaptive" è nelle sue fasi iniziali, sono riportati i potenziali approcci della terapia "adaptive" per i piani di trattamento della testa-collo per i pazienti che vengono trattati con la tomoterapia. [4,5,19,42-44,48,49].

1. Bennett BR, Lamba MA, Elson HR. Analysis of peripheral doses for base of tongue treatment by linear accelerator and helical TomoTherapy IMRT. J. Appl. Clin. Med. Phys. 2010;11:3136.

2. Blasi O, Fontenot JD, Fields RS, et al. Preliminary comparison of helical tomotherapy and mixed beams of unmodulated electrons and intensity modulated radiation therapy for treating superficial cancers of the parotid gland and nasal cavity. Radiat. Oncol. 2011;6:178.

3. Boswell S, Tome W, Jeraj R, et al. Automatic registration of megavoltage to kilovoltage CT images in helical tomotherapy: an evaluation of the setup verification process for the special case of a rigid head phantom. Med Phys 2006;33:4395-4404.

4. Broggi S, Fiorino C, Dell'Oca I, et al. A two-variable linear model of parotid shrinkage during IMRT for head and neck cancer. Radiother. Oncol. 2010;94:206-212.

5. Capelle L, Mackenzie M, Field C, et al. Adaptive radiotherapy using helical tomotherapy for head and neck cancer in definitive and postoperative settings: initial results. Clin Oncol (R Coll Radiol) 2012;24:208-215.

6. Castadot P, Geets X, Lee JA, et al. Assessment by a deformable registration method of the volumetric and positional changes of target volumes and organs at risk in pharyngo-laryngeal tumors treated with concomitant chemo-radiation. Radiother Oncol 2010;95:209-217.

7. Castadot P, Geets X, Lee JA, et al. Adaptive functional image-guided IMRT in pharyngo-laryngeal squamous cell carcinoma: is the gain in dose distribution worth the effort? Radiother Oncol 2011;101:343-350.

8. Castadot P, Lee JA, Geets X, et al. Adaptive radiotherapy of head and neck cancer. Semin Radiat Oncol 2010;20:84-93.

9. Chatterjee S, Mott JH, Smyth G, et al. Clinical challenges in the implementation of a tomotherapy service for head and neck cancer patients in a regional UK radiotherapy centre. Br J Radiol 2011;84:358-366.

10. Chatterjee S, Willis N, Locks SM, et al. Dosimetric and radiobiological comparison of helical tomotherapy, forward-planned intensity-modulated radiotherapy and two-phase conformal plans for radical radiotherapy treatment of head and neck squamous cell carcinomas. Br J Radiol 2011;84:1083-1090.

11. Chen AM, Farwell DG, Luu Q, et al. Prospective trial of high-dose reirradiation using daily image guidance with intensity-modulated radiotherapy for recurrent and second primary head-and-neck cancer. Int J Radiat Oncol Biol Phys 2010;80:669-676.

12. Chen AM, Jennelle RL, Sreeraman R, et al. Initial clinical experience with helical tomotherapy for head and neck cancer. Head Neck 2009;31:1571-1578.

13. Chen AM, Lee NY, Yang CC, et al. Comparison of intensity-modulated radiotherapy using helical tomotherapy and segmental multileaf collimator-based techniques for nasopharyngeal carcinoma: dosimetric analysis incorporating quality assurance guidelines from RTOG 0225. Technol Cancer Res Treat 2010;9:291-298.

14. Chen AM, Sreeraman R, Mathai M, et al. Potential of helical tomotherapy to reduce dose to the ocular structures for patients treated for unresectable sinonasal cancer. Am J Clin Oncol 2010;33:595-598.

15. Chen AM, Yang CC, Marsano J, et al. Intensity-modulated radiotherapy for nasopharyngeal carcinoma: improvement of the therapeutic ratio with helical tomotherapy versus segmental multileaf collimator-based techniques. Br J Radiol 2012.

16. Chen YJ, Han C, Liu A, et al. Setup variations in radiotherapy of esophageal cancer: evaluation by daily megavoltage computed tomographic localization. Int J Radiat Oncol Biol Phys 2007;68:1537-1545.

17. Deasy JO, Moiseenko V, Marks L, et al. Radiotherapy dose-volume effects on salivary gland function. Int J Radiat Oncol Biol Phys 2010;76:S58-63.

18. Duma MN, Kampfer S, Schuster T, et al. Do We Need Daily Image-Guided Radiotherapy by Megavoltage Computed Tomography in Head and Neck Helical Tomotherapy? The Actual Delivered Dose to the Spinal Cord. Int J Radiat Oncol Biol Phys 2012.

19. Duma MN, Kampfer S, Schuster T, et al. Adaptive radiotherapy for soft tissue changes during helical tomotherapy for head and neck cancer. Strahlenther Onkol 2012.

20. Duma MN, Kampfer S, Wilkens JJ, et al. Comparative analysis of an image-guided versus a non-image-guided setup approach in terms of delivered dose to the parotid glands in head-and-neck cancer IMRT. Int J Radiat Oncol Biol Phys 2010;77:1266-1273.

21. Faggiano E, Fiorino C, Scalco E, et al. An automatic contour propagation method to follow parotid gland deformation during head-and-neck cancer tomotherapy. Phys Med Biol 2011;56:775-791.

22. Farrag A, Voordeckers M, Tournel K, et al. Pattern of failure after helical tomotherapy in head and neck cancer. Strahlenther Onkol 2010;186:511-516.

23. Fiorino C, Dell'Oca I, Pierelli A, et al. Simultaneous integrated boost (SIB) for nasopharynx cancer with helical tomotherapy. A planning study. Strahlenther Onkol 2007;183:497-505.

24. Fiorino C, Dell'Oca I, Pierelli A, et al. Significant improvement in normal tissue sparing and target coverage for head and neck cancer by means of helical tomotherapy. Radiother Oncol 2006;78:276-282.

25. Fiorino C, Maggiulli E, Broggi S, et al. Introducing the Jacobian-volume-histogram of deforming organs: application to parotid shrinkage evaluation. Phys Med Biol 2011;56:3301-3312.

26. Franchin G, Vaccher E, Talamini R, et al. Intensity-modulated radiotherapy (IMRT)/Tomotherapy following neoadjuvant chemotherapy in stage IIB-IVA/B undifferentiated nasopharyngeal carcinomas (UCNT): a mono-institutional experience. Oral Oncol 2011;47:905-909.

27. Fung WW, Wu VW, Teo PM. Dosimetric evaluation of a three-phase adaptive radiotherapy for nasopharyngeal carcinoma using helical tomotherapy. Med Dosim 2012;37:92-97.

28. Geets X, Tomsej M, Lee JA, et al. Adaptive biological image-guided IMRT with anatomic and functional imaging in pharyngo-laryngeal tumors: impact on target volume delineation and dose distribution using helical tomotherapy. Radiother Oncol 2007;85:105-115.

29. Gielda BT, Millunchick CH, Smart JP, et al. Helical tomotherapy and larynx sparing in advanced oropharyngeal carcinoma: a dosimetric study. Med Dosim 2010;35:214-219.

30. Habl G, Jensen AD, Potthoff K, et al. Treatment of locally advanced carcinomas of head and neck with intensity-modulated radiation therapy (IMRT) in combination with cetuximab and chemotherapy: the REACH protocol. BMC Cancer 2010;10:651.

31. Han C, Chen YJ, Liu A, et al. Actual dose variation of parotid glands and spinal cord for nasopharyngeal cancer patients during radiotherapy. Int J Radiat Oncol Biol Phys 2008;70:1256-1262.

32. Han C, Schiffner DC, Schultheiss TE, et al. Residual setup errors and dose variations with less-than-daily image guided patient setup in external beam radiotherapy for esophageal cancer. Radiother Oncol 2012;102:309-314.

33. Higgins PD, Han EY, Yuan JL, et al. Evaluation of surface and superficial dose for head and neck treatments using conventional or intensity-modulated techniques. Phys Med Biol 2007;52:1135-1146.

34. Houghton F, Benson RJ, Tudor GS, et al. An assessment of action levels in imaging strategies in head and neck cancer using TomoTherapy. Are our margins adequate in the absence of image guidance? Clin Oncol (R Coll Radiol) 2009;21:720-727.

35. Hsieh CH, Kuo YS, Liao LJ, et al. Image-guided intensity modulated radiotherapy with helical tomotherapy for postoperative treatment of high-risk oral cavity cancer. BMC Cancer 2011;11:37.

36. Jacob V, Bayer W, Astner ST, et al. A planning comparison of dynamic IMRT for different collimator leaf thicknesses with helical tomotherapy and RapidArc for prostate and head and neck tumors. Strahlenther Onkol 2010;186:502-510.

37. Jensen AD, Nikoghosyan A, Hinke A, et al. Combined treatment of adenoid cystic carcinoma with cetuximab and IMRT plus C12 heavy ion boost: ACCEPT [ACC, Erbitux(R) and particle therapy]. BMC Cancer 2011;11:70.

38. Jensen AD, Nikoghosyan A, Windemuth-Kieselbach C, et al. Combined treatment of malignant salivary gland tumours with intensity-modulated radiation therapy (IMRT) and carbon ions: COSMIC. BMC Cancer 2010;10:546.

39. Joshi CP, Darko J, Vidyasagar PB, et al. Dosimetry of interface region near closed air cavities for Co-60, 6 MV and 15 MV photon beams using Monte Carlo simulations. J Med Phys 2010;35:73-80.

40. Kim S, Lee IJ, Kim YB, et al. A comparison of treatment plans using linac-based intensity-modulated radiation therapy and helical tomotherapy for maxillary sinus carcinoma. Technol Cancer Res Treat 2009;8:257-263.

41. Kodaira T, Tomita N, Tachibana H, et al. Aichi cancer center initial experience of intensity modulated radiation therapy for nasopharyngeal cancer using helical tomotherapy. Int J Radiat Oncol Biol Phys 2009;73:1129-1134.

42. Langen KM, Meeks SL, Poole DO, et al. The use of megavoltage CT (MVCT) images for dose recomputations. Phys Med Biol 2005;50:4259-4276.

43. Lee C, Langen KM, Lu W, et al. Evaluation of geometric changes of parotid glands during head and neck cancer radiotherapy using daily MVCT and automatic deformable registration. Radiother Oncol 2008;89:81-88.

44. Lee C, Langen KM, Lu W, et al. Assessment of parotid gland dose changes during head and neck cancer radiotherapy using daily megavoltage computed tomography and deformable image registration. Int J Radiat Oncol Biol Phys 2008;71:1563-1571.

45. Lee TF, Fang FM, Chao PJ, et al. Dosimetric comparisons of helical tomotherapy and step-and-shoot intensity-modulated radiotherapy in nasopharyngeal carcinoma. Radiother Oncol 2008;89:89-96.

46. Lee TK, Rosen, II, Gibbons JP, et al. Helical tomotherapy for parotid gland tumors. Int J Radiat Oncol Biol Phys 2008;70:883-891.

47. Li XA, Qi XS, Pitterle M, et al. Interfractional variations in patient setup and anatomic change assessed by daily computed tomography. Int J Radiat Oncol Biol Phys 2007;68:581-591.

48. Loo H, Fairfoul J, Chakrabarti A, et al. Tumour shrinkage and contour change during radiotherapy increase the dose to organs at risk but not the target volumes for head and neck cancer patients treated on the TomoTherapy HiArt system. Clin Oncol (R Coll Radiol) 2011;23:40-47.

49. Lu N, Feng LC, Cai BN, et al. Clinical study on the changes of the tumor target volume and organs at risk in helical tomotherapy for nasopharyngeal carcinoma. Chin Med J (Engl) 2012;125:87-90.

50. Mavroidis P, Stathakis S, Gutierrez A, et al. Expected clinical impact of the differences between planned and delivered dose distributions in helical tomotherapy for treating head and neck cancer using helical megavoltage CT images. J Appl Clin Med Phys 2009;10:2969.

51. Moldovan M, Fontenot JD, Gibbons JP, et al. Investigation of pitch and jaw width to decrease delivery time of helical tomotherapy treatments for head and neck cancer. Med Dosim 2011;36:397-403.

52. Moon SH, Jung YS, Ryu JS, et al. Outcomes of postoperative simultaneous modulated accelerated radiotherapy for head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2011;81:140-149.

53. Murthy V, Master Z, Gupta T, et al. Helical tomotherapy for head and neck squamous cell carcinoma: dosimetric comparison with linear accelerator-based step-and-shoot IMRT. J Cancer Res Ther 2010;6:194-198.

54. Nguyen NP, Krafft SP, Vinh-Hung V, et al. Feasibility of tomotherapy to reduce normal lung and cardiac toxicity for distal esophageal cancer compared to three-dimensional radiotherapy. Radiother Oncol 2011;101:438-442.

55. Nguyen NP, Smith-Raymond L, Vinh-Hung V, et al. Feasibility of Tomotherapy to spare the cochlea from excessive radiation in head and neck cancer. Oral Oncol 2011;47:414-419.

56. Nguyen NP, Vos P, Vinh-Hung V, et al. Feasibility of image-guided radiotherapy based on helical tomotherapy to reduce contralateral parotid dose in head and neck cancer. BMC Cancer 2012;12:175.

57. Orban de Xivry J, Castadot P, Janssens G, et al. Evaluation of the radiobiological impact of anatomic modifications during radiation therapy for head and neck cancer: can we simply summate the dose? Radiother Oncol 2010;96:131-138.

58. Piotrowski T, Ryczkowski A, Kazmierska J. B-Spline registration based on new concept of an intelligent masking procedure and GPU computations for the head and neck adaptive tomotherapy. Technol Cancer Res Treat 2012;11:257-266.

59. Ren G, Du L, Ma L, et al. Clinical observation of 73 nasopharyngeal carcinoma patients treated by helical tomotherapy: the China experience. Technol Cancer Res Treat 2011;10:259-266.

60. Ren G, Xu S, Du L, et al. [Assessment of parotid gland dose variations by helical tomotherapy adaptive system in head and neck cancer]. Zhongguo Yi Liao Qi Xie Za Zhi 2010;34:335-338.

61. Russo JK, Rosen L. TomoTherapy stereotactic body radiation therapy (SBRT) for the salvage treatment of locally recurrent esophageal adenocarcinoma following trimodality therapy: a case report. Tumori 2011;97:406-410.

62. Russo JK, Rosen L. TomoTherapy stereotactic body radiation therapy (SBRT) for the salvage treatment of locally recurrent esophageal adenocarcinoma following trimodality therapy: a case report. Tumori 2011;97:406-410.

63. Saibishkumar EP, Jha N, Scrimger RA, et al. Sparing the parotid glands and surgically transferred submandibular gland with helical tomotherapy in post-operative radiation of head and neck cancer: a planning study. Radiother Oncol 2007;85:98-104.

64. Sheng K, Molloy JA, Larner JM, et al. A dosimetric comparison of non-coplanar IMRT versus Helical Tomotherapy for nasal cavity and paranasal sinus cancer. Radiother Oncol 2007;82:174-178.

65. Sheng K, Molloy JA, Read PW. Intensity-modulated radiation therapy (IMRT) dosimetry of the head and neck: a comparison of treatment plans using linear accelerator-based IMRT and helical tomotherapy. Int J Radiat Oncol Biol Phys 2006;65:917-923.

66. Shueng PW, Shen BJ, Wu LJ, et al. Concurrent image-guided intensity modulated radiotherapy and chemotherapy following neoadjuvant chemotherapy for locally advanced nasopharyngeal carcinoma. Radiat Oncol 2011;6:95.

67. Shueng PW, Wu LJ, Chen SY, et al. Concurrent chemoradiotherapy with helical tomotherapy for oropharyngeal cancer: a preliminary result. Int J Radiat Oncol Biol Phys 2010;77:715-721.

68. Thomas SJ, Vinall A, Poynter A, et al. A multicentre timing study of intensity-modulated radiotherapy planning and delivery. Clin Oncol (R Coll Radiol) 2010;22:658-665.

69. van Vulpen M, Field C, Raaijmakers CP, et al. Comparing step-and-shoot IMRT with dynamic helical tomotherapy IMRT plans for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2005;62:1535-1539.

70. Voordeckers M, Everaert H, Tournel K, et al. Longitudinal assessment of parotid function in patients receiving tomotherapy for head-and-neck cancer. Strahlenther Onkol 2008;184:400-405.

71. Voordeckers M, Farrag A, Everaert H, et al. Parotid Gland Sparing with Helical Tomotherapy in Head-and-Neck Cancer. Int J Radiat Oncol Biol Phys 2012.

72. Widesott L, Pierelli A, Fiorino C, et al. Intensity-modulated proton therapy versus helical tomotherapy in nasopharynx cancer: planning comparison and NTCP evaluation. Int J Radiat Oncol Biol Phys 2008;72:589-596.

73. Wu WC, Mui WL. A case report on the effect of fan beam thickness in helical tomotherapy of nasopharyngeal carcinoma. Med Dosim 2011;36:57-61.

74. Wu WC, Mui WL, Fung WK. Helical tomotherapy of nasopharyngeal carcinoma-any advantages over conventional intensity-modulated radiotherapy? Med Dosim 2010;35:122-127.

75. Yang C, Liu T, Jennelle RL, et al. Utility of megavoltage fan-beam CT for treatment planning in a head-and-neck cancer patient with extensive dental fillings undergoing helical tomotherapy. Med Dosim 2010;35:108-114.

76. You SH, Kim SY, Lee CG, et al. Is There a Clinical Benefit to Adaptive Planning During Tomotherapy in Patients with Head and Neck Cancer at Risk for Xerostomia? Am J Clin Oncol 2011.

77. Zeidan OA, Langen KM, Meeks SL, et al. Evaluation of image-guidance protocols in the treatment of head and neck cancers. Int J Radiat Oncol Biol Phys 2007;67:670-677.

78. Zhang X, Penagaricano J, Moros EG, et al. Dosimetric comparison of helical tomotherapy and linac-IMRT treatment plans for head and neck cancer patients. Med Dosim 2010;35:264-268.

9.2. Mammella

Quando si tratta di radioterapia, i pazienti di cancro alla mammella sono un gruppo eterogeneo - i pazienti in fase iniziale possono beneficiare di irradiazione parziale della mammella dopo mastectomia parziale, i pazienti in stadio più avanzato possono richiedere l'irradiazione completa della mammella con boost integrato simultaneo (SIB) ai linfonodi coinvolti, i pazienti dopo la mastectomia possono avere bisogno di una distribuzione di dose omogenea alla parete toracica e alla pelle - e la qualità di qualsiasi di questi trattamenti dipende dal lato del corpo che viene trattato (con l'irradiazione sinistra è richiesta una maggiore attenzione per mantenere la dose cardiaca bassa), la forma e le dimensioni del mammella, la forma del torace, ecc.

Da tempo è stato riconosciuto che la tomoterapia può essere usato per creare e fornire distribuzioni di dose per i casi complicati; una revisione fatta da O'Donnell et al. [29] fornisce una eccellente sintesi dei vantaggi della tomoterapia in tali casi (tra i quali i più importanti sono: la malattia bilaterale, l'irradiazione della mammella sinistra, il "petto ad imbuto", la protesi controlaterale prominente e la malattia della catena mammaria interna).

Il sistema di tomoterapia ha anche una modalità denominata "TomoDirect", in cui i fasci vengono emessi con l'acceleratore in posizione fissa e con il paziente che si muove attraverso il vano dello stativo, imitando così la semplice irradiazione con due fasci tangenziali dell'acceleratore lineare.

Reynders et al. [32] hanno esaminato piani sia in modalità elicoidale e in modalità diretta e hanno trovato che danno risultati uguali o migliori del trattamento convenzionale, sia per la precisione d'irradiamento del volume bersaglio sia per la protezione del cuore, del polmone e dei tessuti molli.

Molti studi sono giunti a conclusioni simili per una vasta gamma di casi di cancro alla mammella [1,4,6, 12,13,16,19,20,23,25,33].

Altrettanto importante è la capacità di ottenere piani di notevole accuratezza, resa possibile dall'imaging MVCT quotidiana. Goddu et al. [14] hanno concluso che l'imaging MVCT quotidiano è consigliato per assicurare una miglior qualità nella somministrazione della dose con una forte diminuizione della dose verso il polmone.

Rong et al. [33] e Langen et al. [24] hanno rilevato il valore di poter visualizzare la cavità di sieroma per l'allineamento con la MVCT (da Langen et al; "La precisione dell'allineamento basata sulla cavità di sieroma MVCT è migliore di 2 mm").

La procedura MVCT giornaliera offre anche la possibilità di visualizzare i volumi di trattamento e gli OAR durante il trattamento e adattare i piani di trattamento per garantire la copertura della lesione e, se necessario, ridurre la dose agli OAR [33,37].

I risultati clinici sono stati favorevoli; Cendales et al. [5] hanno riportato su 10 pazienti "difficili da trattare" (la maggior parte per i quali i vincoli di dose non erano realizzabili con la tecnica 3DCRT) con 50 Gy, in frazioni da 2-Gy, con boost sequenziali o integrati e irradiazione nodale. Sono stati riportati casi di tossicità non superiore al Grado 2 per tossicità cutanea e un solo caso di grado 1 per tossicità esofagea.

Sono stati recentemente pubblicati i dati di 70 pazienti in uno studio randomizzato nel caso di trattamento con tecnica 3DCRT in confronto con la tecnica tomoterapia [43], in cui i pazienti 3DCRT hanno ricevuto 50 Gy in frazioni di 2 Gy (più un boost sequenziale per i pazienti con nodulectomia) e pazienti Tomo hanno ricevuto 15 frazioni di 2.8 Gy più boost simultaneo integrato di 0,6 Gy/frazione per i pazienti con nodulectomia (dose cumulativa di 51 Gy). Gli autori hanno riportato tossicità; tossicità cutanea, grado 1 + , a 2 anni, nel 60% dei pazienti 3DCRT e nel 30% dei pazienti Tomo. La funzionalità cardiaca si è dimostrata uguale tra pazienti 3DCRT e pazienti Tomo, e la funzione polmonare era significativamente migliore a 2 anni per i pazienti Tomo.

 

1. Ashenafi M, Boyd RA, Lee TK, et al. Feasibility of postmastectomy treatment with helical TomoTherapy. Int J Radiat Oncol Biol Phys 2010;77:836-842.

2. Capelle L, Warkentin H, Mackenzie M, et al. Skin-sparing Helical Tomotherapy vs 3D-conformal Radiotherapy for Adjuvant Breast Radiotherapy: In Vivo Skin Dosimetry Study. Int J Radiat Oncol Biol Phys 2012.

3. Caudell JJ, De Los Santos JF, Keene KS, et al. A dosimetric comparison of electronic compensation, conventional intensity modulated radiotherapy, and tomotherapy in patients with early-stage carcinoma of the left breast. Int J Radiat Oncol Biol Phys 2007;68:1505-1511.

4. Caudrelier JM, Morgan SC, Montgomery L, et al. Helical tomotherapy for locoregional irradiation including the internal mammary chain in left-sided breast cancer: dosimetric evaluation. Radiother Oncol 2009;90:99-105.

5. Cendales R, Schiappacasse L, Schnitman F, et al. Helical tomotherapy in patients with breast cancer and complex treatment volumes. Clin Transl Oncol 2011;13:268-274.

6. Chatterjee S, Lee D, Kent N, et al. Managing supraclavicular disease from breast cancer with brachial plexus-sparing techniques using helical tomotherapy. Clin Oncol (R Coll Radiol) 2011;23:101-107.

7. Chen MF, Chen WC, Lai CH, et al. Predictive factors of radiation-induced skin toxicity in breast cancer patients. BMC Cancer 2010;10:508.

8. Coon AB, Dickler A, Kirk MC, et al. Tomotherapy and multifield intensity-modulated radiotherapy planning reduce cardiac doses in left-sided breast cancer patients with unfavorable cardiac anatomy. Int J Radiat Oncol Biol Phys 2010;78:104-110.

9. de Almeida CE, Fournier-Bidoz N, Massabeau C, et al. Potential benefits of using cardiac gated images to reduce the dose to the left anterior descending coronary during radiotherapy of left breast and internal mammary nodes. Cancer Radiother 2012;16:44-51.

10. Donovan EM, Ciurlionis L, Fairfoul J, et al. Planning with intensity-modulated radiotherapy and tomotherapy to modulate dose across breast to reflect recurrence risk (IMPORT High trial). Int J Radiat Oncol Biol Phys 2011;79:1064-1072.

11. Fournier-Bidoz N, Kirova Y, Campana F, et al. Technique alternatives for breast radiation oncology: Conventional radiation therapy to tomotherapy. J Med Phys 2009;34:149-152.

12. Franco P, Catuzzo P, Cante D, et al. TomoDirect: an efficient means to deliver radiation at static angles with tomotherapy. Tumori 2011;97:498-502.

13. Goddu SM, Chaudhari S, Mamalui-Hunter M, et al. Helical tomotherapy planning for left-sided breast cancer patients with positive lymph nodes: comparison to conventional multiport breast technique. Int J Radiat Oncol Biol Phys 2009;73:1243-1251.

14. Goddu SM, Yaddanapudi S, Pechenaya OL, et al. Dosimetric consequences of uncorrected setup errors in helical Tomotherapy treatments of breast-cancer patients. Radiother Oncol 2009;93:64-70.

15. Gonzalez VJ, Buchholz DJ, Langen KM, et al. Evaluation of two tomotherapy-based techniques for the delivery of whole-breast intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 2006;65:284-290.

16. Hijal T, Fournier-Bidoz N, Castro-Pena P, et al. Simultaneous integrated boost in breast conserving treatment of breast cancer: a dosimetric comparison of helical tomotherapy and three-dimensional conformal radiotherapy. Radiother Oncol 2010;94:300-306.

17. Hui SK, Das RK, Kapatoes J, et al. Helical tomotherapy as a means of delivering accelerated partial breast irradiation. Technol Cancer Res Treat 2004;3:639-646.

18. Ito S, Parker BC, Levine R, et al. Verification of calculated skin doses in postmastectomy helical tomotherapy. Int J Radiat Oncol Biol Phys 2011;81:584-591.

19. Javedan K, Zhang G, Mueller R, et al. Skin dose study of chest wall treatment with tomotherapy. Jpn J Radiol 2009;27:355-362.

20. Jones R, Yang W, Read P, et al. Radiation therapy of post-mastectomy patients with positive nodes using fixed beam tomotherapy. Radiother Oncol 2011;100:247-252.

21. Kainz K, White J, Chen GP, et al. Simultaneous irradiation of the breast and regional lymph nodes in prone position using helical tomotherapy. Br J Radiol 2012.

22. Kainz K, White J, Herman J, et al. Investigation of helical tomotherapy for partial-breast irradiation of prone-positioned patients. Int J Radiat Oncol Biol Phys 2009;74:275-282.

23. Langen KM, Buchholz DJ, Burch DR, et al. Investigation of accelerated partial breast patient alignment and treatment with helical tomotherapy unit. Int J Radiat Oncol Biol Phys 2008;70:1272-1280.

24. Langen KM, Meeks SL, Poole DO, et al. The use of megavoltage CT (MVCT) images for dose recomputations. Phys Med Biol 2005;50:4259-4276.

25. McIntosh A, Read PW, Khandelwal SR, et al. Evaluation of coplanar partial left breast irradiation using tomotherapy-based topotherapy. Int J Radiat Oncol Biol Phys 2008;71:603-610.

26. Mihailidis DN, Harmon M. Tomotherapy versus conventional planning for left-sided breast cancer with lymph nodes-dosimetric comparison: in regard to Goddu et al. (Int J Radiat Oncol Biol Phys 2009;73:1243-1251). Int J Radiat Oncol Biol Phys 2009;75:317; author reply 317-318.

27. Moeckly SR, Lamba M, Elson HR. Respiratory motion effects on whole breast helical tomotherapy. Med Phys 2008;35:1464-1475.

28. Njeh CF, Saunders MW, Langton CM. Accelerated partial breast irradiation using external beam conformal radiation therapy: a review. Crit Rev Oncol Hematol 2012;81:1-20.

29. O'Donnell H, Cooke K, Walsh N, et al. Early experience of tomotherapy-based intensity-modulated radiotherapy for breast cancer treatment. Clin Oncol (R Coll Radiol) 2009;21:294-301.

30. Offerman S, Lamba M, Lavigne R. Effect of breast volume on treatment reproducibility on a tomotherapy unit in the treatment of breast cancer. Int J Radiat Oncol Biol Phys 2011;80:417-421.

31. Patel RR, Becker SJ, Das RK, et al. A dosimetric comparison of accelerated partial breast irradiation techniques: multicatheter interstitial brachytherapy, three-dimensional conformal radiotherapy, and supine versus prone helical tomotherapy. Int J Radiat Oncol Biol Phys 2007;68:935-942.

32. Reynders T, Tournel K, De Coninck P, et al. Dosimetric assessment of static and helical TomoTherapy in the clinical implementation of breast cancer treatments. Radiother Oncol 2009;93:71-79.

33. Rong Y, Fahner T, Welsh JS. Hypofractionated breast and chest wall irradiation using simultaneous in-field boost IMRT delivered via helical tomotherapy. Technol Cancer Res Treat 2008;7:433-439.

34. Rong Y, Yadav P, Welsh JS, et al. Postmastectomy radiotherapy with integrated scar boost using helical tomotherapy. Med Dosim 2012.

35. Saibishkumar EP, MacKenzie MA, Severin D, et al. Skin-sparing radiation using intensity-modulated radiotherapy after conservative surgery in early-stage breast cancer: a planning study. Int J Radiat Oncol Biol Phys 2008;70:485-491.

36. Strydhorst JH, Caudrelier JM, Clark BG, et al. Evaluation of a thermoplastic immobilization system for breast and chest wall radiation therapy. Med Dosim 2011;36:81-84.

37. Trovo M, Drigo A, Dassie A, et al. Adaptive radiation therapy in a patient with a massive nodal breast cancer recurrence. Tumori 2009;95:550-552.

38. Uhl M, Sterzing F, Habl G, et al. Breast cancer and funnel chest. Comparing helical tomotherapy and three-dimensional conformal radiotherapy with regard to the shape of pectus excavatum. Strahlenther Onkol 2012;188:127-135.

39. Van Parijs H, Miedema G, Vinh-Hung V, et al. Short course radiotherapy with simultaneous integrated boost for stage I-II breast cancer, early toxicities of a randomized clinical trial. Radiat Oncol 2012;7:80.

40. Zhou GX, Xu SP, Dai XK, et al. Clinical dosimetric study of three radiotherapy techniques for postoperative breast cancer: Helical Tomotherapy, IMRT, and 3D-CRT. Technol Cancer Res Treat 2011;10:15-23.

41. Zibold F, Sterzing F, Sroka-Perez G, et al. Surface dose in the treatment of breast cancer with helical tomotherapy. Strahlenther Onkol 2009;185:574-581.

9.3. Prostata

La forza unica della tomoterapia nei trattamenti per la prostata risiede principalmente nella capacità di fornire simultaneamente dosi sterilizzanti a linfonodi a rischio mentre in contemporanea si irradia, ad una dose maggiore, la prostata e le vescicole seminali prossimali-distali (concetto di boost simultaneo integrato, o SIB), risparmiando gli OAR (vescica, retto, bulbo del pene, teste femorali, intestino e reni).

Diversi studi hanno dimostrato la superiorità della tecnica IMRT nella omogeneità della dose e nel risparmio del retto e di altri OAR [10,21,51,54,62]. L'imaging integrato MVCT consente il posizionamento accurato del paziente con informazioni di tipo volumetrico. Tale posizionamento può essere critico, in particolare, quando si irradiano contemporaneamente strutture al di fuori della prostata [44]. Si dimostra che l'IGRT, non eseguita giornalmente, causa errori di posizionamento residuo in una significativa percentuale di pazienti, ad esempio, "Anche quando I'GRT è stata eseguita a giorni alterni con una media degli spostamenti precedenti, si verificano errori di posizionamento > 5 millimetri nel 24% di tutte le frazioni" [27, vedi anche 66].

La MVCT, eseguita quotidianamente, consente anche l'individuazione e la valutazione delle conseguenze del movimento della prostata [30,38], e misure per ridurre tale movimento [12,16].

Nel caso in cui vi siano delle protesi femorali metalliche, che causano artifatti nella ricostruzione delle immagini TAC e rendano difficile la pianificazione con scansioni kVCT, l'immagine ricostruita con una scansione MVCT, nella quale non si hanno gli artefatti, dovuti alla ptesenza di protesi metalliche, può essere utilissima per calcolare l'esatta distribuzione di dose [3].

Gli esiti clinici fino ad oggi mostrano ottimi profili di tossicità acuta e tardiva in pazienti in trattamento con i piani SIB [11,12,34,47]. In una recente ricerca con rischio intermedio e alto, è stato ottenuto un controllo eccellente della malattia e bassa tossicità [1,34,35,61].

Tomita et al. [61] hanno seguito 241 pazienti con carcinoma localizzato della prostata (a basso rischio n = 17, a rischio intermedio n = 53, ad alto rischio, n = 151) per una mediana di 35 mesi. Non si è verificato alcuna tossicità acuta di grado 3 +, e l'incidenza per tossicità ritardata di grado 3 GI è stata dello 0,8% e la tossicità GU è stato di 1,2%. Il controllo della malattia nei pazienti ad alto rischio è stato approssimativamente del 92% a 5 anni.

Infine, l'imaging integrato MVCT consente la valutazione delle variazioni delle posizioni dei volumi del target e dei volumi OAR durante il trattamento, e il preciso ricalcolo della dose, e quindi la possibilità di eseguire una radioterapia adaptive [31,63].

 

1. Adkison JB, McHaffie DR, Bentzen SM, et al. Phase I trial of pelvic nodal dose escalation with hypofractionated IMRT for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 2012;82:184-190.

2. Alongi F, Fiorino C, Cozzarini C, et al. IMRT significantly reduces acute toxicity of whole-pelvis irradiation in patients treated with post-operative adjuvant or salvage radiotherapy after radical prostatectomy. Radiother Oncol 2009;93:207-212.

3. Alongi F, Fodor A, Maggio A, et al. Megavoltage CT images of helical tomotherapy unit for radiation treatment simulation: impact on feasibility of treatment planning in a prostate cancer patient with bilateral femoral prostheses. Tumori 2011;97:221-224.

4. Alongi F, Schipani S, Gajate AM, et al. [11C]choline-PET-guided helical tomotherapy and estramustine in a patient with pelvic-recurrent prostate cancer: local control and toxicity profile after 24 months. Tumori 2010;96:613-617.

5. Beldjoudi G, Yartsev S, Bauman G, et al. Schedule for CT image guidance in treating prostate cancer with helical tomotherapy. Br J Radiol 2010;83:241-251.

6. Broggi S, Cozzarini C, Fiorino C, et al. Modeling set-up error by daily MVCT for prostate adjuvant treatment delivered in 20 fractions: Implications for the assessment of the optimal correction strategies. Radiother Oncol 2009;93:246-252.

7. Cheng JC, Schultheiss TE, Nguyen KH, et al. Acute toxicity in definitive versus postprostatectomy image-guided radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2008;71:351-357.

8. Cozzarini C, Fiorino C, Di Muzio N, et al. Significant reduction of acute toxicity following pelvic irradiation with helical tomotherapy in patients with localized prostate cancer. Radiother Oncol 2007;84:164-170.

9. Cozzarini C, Fiorino C, Di Muzio N, et al. Hypofractionated adjuvant radiotherapy with helical tomotherapy after radical prostatectomy: planning data and toxicity results of a Phase I-II study. Radiother Oncol 2008;88:26-33.

10. Davidson MT, Blake SJ, Batchelar DL, et al. Assessing the role of volumetric modulated arc therapy (VMAT) relative to IMRT and helical tomotherapy in the management of localized, locally advanced, and post-operative prostate cancer. Int J Radiat Oncol Biol Phys 2011;80:1550-1558.

11. Di Muzio N, Fiorino C, Cozzarini C, et al. Phase I-II study of hypofractionated simultaneous integrated boost with tomotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2009;74:392-398.

12. Engels B, Soete G, Tournel K, et al. Helical tomotherapy with simultaneous integrated boost for high-risk and lymph node-positive prostate cancer: early report on acute and late toxicity. Technol Cancer Res Treat 2009;8:353-359.

13. Engels B, Tournel K, Soete G, et al. Assessment of rectal distention in radiotherapy of prostate cancer using daily megavoltage CT image guidance. Radiother Oncol 2009;90:377-381.

14. Fiorino C, Alongi F, Broggi S, et al. Physics aspects of prostate tomotherapy: planning optimization and image-guidance issues. Acta Oncol 2008;47:1309-1316.

15. Fiorino C, Alongi F, Perna L, et al. Dose-volume relationships for acute bowel toxicity in patients treated with pelvic nodal irradiation for prostate cancer. Int J Radiat Oncol Biol Phys 2009;75:29-35.

16. Fiorino C, Di Muzio N, Broggi S, et al. Evidence of limited motion of the prostate by carefully emptying the rectum as assessed by daily MVCT image guidance with helical tomotherapy. Int J Radiat Oncol Biol Phys 2008;71:611-617.

17. Grigorov G, Kron T, Wong E, et al. Optimization of helical tomotherapy treatment plans for prostate cancer. Phys Med Biol 2003;48:1933-1943.

18. Hermesse J, Biver S, Jansen N, et al. A dosimetric selectivity intercomparison of HDR brachytherapy, IMRT and helical tomotherapy in prostate cancer radiotherapy. Strahlenther Onkol 2009;185:736-742.

19. Holly R, Myrehaug S, Kamran A, et al. High-dose-rate prostate brachytherapy in a patient with bilateral hip prostheses planned using megavoltage computed tomography images acquired with a helical tomotherapy unit. Brachytherapy 2009;8:70-73.

20. Hong TS, Tome WA, Jaradat H, et al. Pelvic nodal dose escalation with prostate hypofractionation using conformal avoidance defined (H-CAD) intensity modulated radiation therapy. Acta Oncol 2006;45:717-727.

21. Iori M, Cattaneo GM, Cagni E, et al. Dose-volume and biological-model based comparison between helical tomotherapy and (inverse-planned) IMAT for prostate tumours. Radiother Oncol 2008;88:34-45.

22. Jacob V, Bayer W, Astner ST, et al. A planning comparison of dynamic IMRT for different collimator leaf thicknesses with helical tomotherapy and RapidArc for prostate and head and neck tumors. Strahlenther Onkol 2010;186:502-510.

23. Keiler L, Dobbins D, Kulasekere R, et al. Tomotherapy for prostate adenocarcinoma: a report on acute toxicity. Radiother Oncol 2007;84:171-176.

24. Kling J, Patel KM. Prostate treatment with helical TomoTherapy in patients with bilateral hip prostheses-Two case studies. Med Dosim 2012.

25. Kupelian PA, Langen KM, Willoughby TR, et al. Daily variations in the position of the prostate bed in patients with prostate cancer receiving postoperative external beam radiation therapy. Int J Radiat Oncol Biol Phys 2006;66:593-596.

26. Kupelian PA, Langen KM, Zeidan OA, et al. Daily variations in delivered doses in patients treated with radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 2006;66:876-882.

27. Kupelian PA, Lee C, Langen KM, et al. Evaluation of image-guidance strategies in the treatment of localized prostate cancer. Int J Radiat Oncol Biol Phys 2008;70:1151-1157.

28. Langen KM, Chauhan B, Siebers JV, et al. The Dosimetric Effect of Intrafraction Prostate Motion on Step-and-Shoot Intensity-Modulated Radiation Therapy Plans: Magnitude, Correlation With Motion Parameters, and Comparison With Helical Tomotherapy Plans. Int J Radiat Oncol Biol Phys 2012.

29. Langen KM, Lu W, Ngwa W, et al. Correlation between dosimetric effect and intrafraction motion during prostate treatments delivered with helical tomotherapy. Phys Med Biol 2008;53:7073-7086.

30. Langen KM, Lu W, Willoughby TR, et al. Dosimetric effect of prostate motion during helical tomotherapy. Int J Radiat Oncol Biol Phys 2009;74:1134-1142.

31. Langen KM, Meeks SL, Poole DO, et al. The use of megavoltage CT (MVCT) images for dose recomputations. Phys Med Biol 2005;50:4259-4276.

32. Langen KM, Zhang Y, Andrews RD, et al. Initial experience with megavoltage (MV) CT guidance for daily prostate alignments. Int J Radiat Oncol Biol Phys 2005;62:1517-1524.

33. Lin SH, Sugar E, Teslow T, et al. Comparison of daily couch shifts using MVCT (TomoTherapy) and B-mode ultrasound (BAT System) during prostate radiotherapy. Technol Cancer Res Treat 2008;7:279-285.

34. Longobardi B, Berardi G, Fiorino C, et al. Anatomical and clinical predictors of acute bowel toxicity in whole pelvis irradiation for prostate cancer with Tomotherapy. Radiother Oncol 2011.

35. Lopez Guerra JL, Isa N, Matute R, et al. Hypofractionated helical tomotherapy using 2.5-2.6 Gy daily fractions for localized prostate cancer. Clin Transl Oncol 2012.

36. Maggio A, Fiorino C, Mangili P, et al. Feasibility of safe ultra-high (

News

03/07/2018 News

RaySearch and Eckert & Ziegler BEBIG enter into partnership regarding brachytherapy

RaySearch and Eckert & Ziegler BEBIG, a leading European supplier of brachytherapy products, have signed a partnership agreement. Both the RayStation® treatment planning system and the RayCare* oncology infor [...]

02/07/2018 News

DE.TEC.TOR entra nel gruppo TA Technologic ed Euroimaging

Abbiamo il piacere di comunicare che il 28 Giugno 2018 è stato siglato un accordo per l'incorporazione della società DE.TEC.TOR., leader mondiale nella ricerca e sviluppo di rivelato [...]

22/06/2018 News

Primo paziente in Italia trattato con il sistema Radixact™

Tecnologie Avanzate è lieta di annunciare che oggi è stato trattato il primo paziente in Italia con il nuovo sistema Radixact™  di Accuray, presso il nuovissimo sito dello IOV che si trova&n [...]

Eventi

20gen2017 | Eventi

RayCare Symposium, Roma 26 gennaio 2017

Tecnologie Avanzate è lieta di comunicare che il 26 gennaio organizza a Roma il primo RayCare Symposium, un incontro destinato a presentare in [...]

20set2018 | Eventi

INCONTRI BRESCIANI DI RADIOTERAPIA ONCOLOGICA, EDIZIONE 2018 - Brescia, 20/21 Settembre

Tecnologie Avanzate sarà sponsor del congresso "Incontri Bresciani di Radioterapia Oncologica" che avrà luogo a Brescia in data 20-21 se [...]